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ABSTRACT

The vector field relations and mobile charge thermo-
dynamics that form a complete and self-consistent classical
model of the electromagnetic interaction are presented. The
charge thermodynamics includes an original treatment of
heat flow between ideal Fermi gases that is derived from
their heat capacities. An original discretization scheme
based on the properties of Delaunay and Voronoi meshes
is also presented. This new scheme allows the field equa-
tions to be solved self-consistently with the highly nonlinear
charge transport equations, producing the fully coupled dy-
namics of full wave vector fields, mobile charge densities,
as well as mobile charge and crystal lattice temperatures.
Linear and nonlinear lossy transmission lines are used to
demonstrate the simulator.

1. INTRODUCTION

Decades of research in computational electromagnet-
ics and electronics have led to both sophisticated full wave
field solvers and advanced semiconductor device simulators.
However, both types of computation typically incorporate
certain simplifying assumptions that limit their applica-
tions. For example, full wave field solvers commonly ap-
proximate charge transport as a linear process in which the
mobile charge flux is directly proportional to the electric
field. On the other hand, while active semiconductor de-
vice simulators offer a much more detailed description of
nonlinear charge dynamics, they typically treat the fields
with the electrostatic approximation. Although there are
many important applications for these two distinctly differ-
ent treatments of the electromagnetic interaction, current
technological trends have created a need to unify the two
approaches.

Advances in high performance microelectronics have
produced smaller component sizes, higher circuit densities,
and increased operating frequencies. These advances have
led to full wave phenomena that affect the behavior of ac-
tive components and circuits. For example, at clock speeds
above a few hundred megahertz, surface waves, propagation
delays, as well as unintended radiation, causing crosstalk
between densely integrated components, can become im-
portant. At still higher frequencies, e.g. in the millimeter
wave range, there may even be a qualitative shift in the way
individual active components behave. As fields fluctuate at
rates comparable to mobile charge momentum and energy
relaxation rates, an active device can behave less as a non-
linearly component that manipulates a signal and more like
a linear passive element that stores electromagnetic energy.

Aside from unintended consequences, other advanced
technologies exploit the tight nonlinear coupling between
electromagnetic radiation and mobile charges. For example,
a possible ultrahigh frequency modulation scheme for laser
diodes is based on heating degenerate two-dimensional gases
of mobile charges in a quantum well with terahertz radia-
tion (Li and Ning 2000). Another new technology uses hot
electron induced real space transfer in the channel of a short
gate length HEMT to emit terahertz radiation, providing a
useful compact source for radiation in this frequency range
(Knap et al. 2004). Simulating nonlinear charge transport
with full wave electromagnetics is required to advance these
new technologies as well as to understand the full wave par-
asitics in high speed microelectronics.

The need for full wave treatment of active devices has
led to work on combining full wave field solvers and semicon-
ductor device simulators. While virtually all these efforts
treat the fields using the Finite Difference Time Domain
(FDTD) method developed by Yee (Yee 1966), they differ
in the levels of detail with which they treat active devices.
Some approaches replace the active devices with lumped
parameter equivalent circuits which impose field controlled
current sources on certain edges of the FDTD mesh (Sui
et al. 1992), (Piket-May et al. 1994), (Ciampolini et al.
1996). Other approaches treat carrier transport directly by
coupling the FDTD field equations to the Boltzmann equa-
tion, solved classically with drift-diffusion or hydrodynamic
theory (Sano and Shibata 1990), (Alsunaidi et al. 1996),
(Mavahhedi and Abdipour 2006) or semi-classically with the
Monte Carlo method (El-Ghazaly et al. 1990), (Goodnick
et al. 1995).

Although different full wave simulations of active de-
vices treat charge transport differently, their common use
of FDTD field discretization gives them certain similari-
ties. For example, FDTD requires a structured mesh and
uses explicit time stepping. Explicit time stepping can be
performed without factoring a large Jacobian matrix to de-
termine the rotational fields. On the surface, this is a great
advantage, allowing the solution of problems with tens of
millions of unknowns (Piket-May et al. 1994). However, this
advantage is undone, at least in part, by the highly non-
linear coupling of the fields and the mobile charge fluxes.
This tight coupling imposes severe discretization restric-
tions that can require dense meshes, refined in terms of
the Debye length, to represent the Boltzmann equation (Al-
sunaidi et al. 1996), (Mavahhedi and Abdipour 2006) and
very short time steps determined by the Courant condition.
With these discretization requirements, solving a relatively
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small problem domain can require millions of solution vari-
ables solved repeatedly for tens of thousands of time steps.
Finally, the “leapfrog” scheme FDTD uses to step through
time means that at no moment during the simulation are
the electric and magnetic fields and the mobile charge fluxes
self-consistent. In addition to adding to stability problems,
lack of self-consistency means that the highly nonlinear ex-
change of energy between the electromagnetic fields and the
mobile charges is never fully represented.

This paper presents a self-consistent classical model
of the electromagnetic interaction suitable for full wave
simulation of active semiconductor devices. Electromag-
netic fields are discretized using a new scheme called De-
launay/Voronoi Surface Integration (DVSI) which allows
unstructured tetrahedral meshes. The mobile charge and
energy fluxes are derived from moments of the Boltzmann
equation and incorporate a new treatment of heat flow de-
rived from the heat capacity of Fermi gases. The field equa-
tions are solved self-consistently with the charge and en-
ergy transport equations. This greatly improves the sta-
bility of the simulator so that discretization is determined
solely by variations in the solution variables. That is, the
mesh need only be refined enough to adequately represent
field wavelengths and rapid changes in charge densities, e.g.
dopant junctions, heterojunctions, Schottky barriers. Like-
wise, time steps need only by small enough to represent
dynamic variations in the solution variables. This permits
adaptive time stepping where time steps may vary by several
orders of magnitude during the course of a simulation. To
demonstrate the model, certain linear and nonlinear lossy
transmission line simulations are presented.

2. FULL WAVE NONLINEAR
CHARGE TRANSPORT

Maxwell’s vector field theory and his kinetic theory of
gases form a complete and self-consistent model of the elec-
tromagnetic interaction. The model consists of Maxwell’s
static and dynamic field equations as well as the equations
for charge and energy conservation. Charge and energy con-
servation can be derived from moments of the Boltzmann
equation, and the fluxes that appear in these conservation
laws can also be obtained from moments of the Boltzmann
equation with special attention payed to the thermodynam-
ics of ideal gases.

2.1 Maxwell’s Field Equations

The behavior of electromagnetic fields is completely de-
termined by Maxwell’s equations.

∇ · εE = ρ (1)

∇ · µH = 0 (2)

∇×H = J +
∂εE

∂t
(3)

∇×E = −∂µH

∂t
(4)

where (1) and (2) are Gauss’s electrostatic and magneto-
static laws respectively, (3) is Ampere’s law, (4) is Faraday’s

law, ε is the dielectric constant, µ is the magnetic perme-
ability, E is the electric field, H is the magnetic field, ρ is
the charge density, and J is the mobile charge flux. The
charge density is determined locally by the concentration
of mobile electrons n, mobile holes p, ionized donor impu-
rities N+

D , and ionized acceptors N−
A . The charge flux is

determined locally by mobile electron and hole fluxes. The
charge densities and fluxes are obtained from the transport
model.

To find the electric and magnetic fields that satisfy the
four Maxwell’s equations, the electric field can be expressed
in terms of vector and scalar potentials, A and ψ respec-
tively.

E = −
(
∂A

∂t
+∇ψ

)
= Erot + Eirr (5)

Since the curl of a gradient is always zero, ∇ψ represents
a conservative, irrotational electric field. To make the two
electric field components functionally orthogonal, a zero di-
vergence is assigned to the divergence of the vector poten-
tial’s displacement.

∇ · ε∂A

∂t
= 0

This is equivalent to the Coulomb gauge for a homogeneous
medium. It allows the time derivative of the vector potential
to be viewed as an entirely rotational electric field.

From Faraday’s law, the magnetic flux density is given
by the curl of the vector potential.

µH = ∇×A

Since the divergence of a curl is always zero, Gauss’s mag-
netostatic law is automatically satisfied. This means that
the magnetic field is treated as entirely rotational, which is
valid for homogeneous permeability. For nonhomogeneous
µ, e.g. ferrites, the magnetic field should be expressed in
terms of rotational and conservative components, similar to
(5). However, this paper only considers homogeneous per-
meability.

2.2 Classical Charge Transport

For classical systems, charges can be treated as particles
with their behavior determined by the Boltzmann equation.
A relatively efficient way to solve this equation treats the
charges as ideal Fermi gases. An ideal Fermi gas in three
dimensions is spherically symmetric in momentum space,
and its distribution in energy is determined by its chemical
potential and temperature according to Fermi-Dirac statis-
tics.

fn =
1

exp
(

E−Fn

kTn

)
+ 1

where fn is the occupation probability of an electron in
the conduction band of a semiconductor, E is the electron
energy, Fn is its chemical potential (quasi-Fermi level), and
Tn is the electron temperature. An analogous expression ex-
ists for the distribution function of positively charged holes
in the valence band. The effective mass approximation for
band structure can be used to integrate fn over all available
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momentum states and define the local electron density.

n =
√

2m3/2
n

π2h̄3

∫ ∞

EC

√
E − EC

exp
(

E−Fn

kTn

)
+ 1

dE

= NC(kT )3/2F1/2(ηn)

where mn is the effective mass for electrons, EC is the con-
duction band edge, Fi is the Fermi integral of degree i, and
ηn = (Fn − EC)/(kTn). A similar expression exists for the
density of holes in the valence band. Fermi-Dirac statistics
is also used to calculate the density of ionized dopant impu-
rities. The electron energy density is obtained in a similar
manner.

En = NC(kT )5/2F3/2(ηn)

The classical charge transport model is obtained from
moments of the Boltzmann equation, expressed in terms of
the relaxation time and effective mass approximations (Hess
2000). For electrons, the moments have the following form.

1
4π3

∫
O

{
fn + τ

∂fn

∂t
=
τ

h̄
F · ∇kfn − τv · ∇fn

}
dk (6)

where τ is the momentum relaxation time, v is the electron
velocity, and k is its momentum vector. The total force
F acting on the electron includes both the Coulomb and
Lorentz forces.

F = −q(E + v ×B)

Different moments are obtained with different choices of the
operator O acting on the Boltzmann equation.

Electron conservation is obtained by setting O = 1 and
integrating over all k-states to obtain the zeroth moment.

−∂n
∂t

= ∇ · Jn + Un

where Jn is the electron flux and Un is the net recombi-
nation rate. This paper considers only the Shockley-Hall-
Read recombination mechanism (Hess 2000). The electron
flux Jn is obtained by setting O = v and integrating over
all k states to yield the drift-diffusion flux.

Jn + τ̄
∂Jn

∂t
= −µnNC

M̄

1 + µ2
nB2 ×

[
(kT )3/2F1/2E+

(kT )3/2F1/2∇
(

2
3
F3/2

F1/2

kT

q

)
+

(
2
3
F3/2

F1/2

kT

q

)
∇(kT )3/2F1/2

]
(7)

where τ̄ is an average momentum relaxation lifetime, µn is
the electron mobility, B = µH is the magnetic flux density,
and M̄ is a tensor that generates the vortex flux compo-
nents produced by the Lorentz force.

M̄ =

[
Mxx Mxy Mxz
Myx Myy Myz
Mzx Mzy Mzz

]

Mxx = 1 + µ2
nB

2
x

Mxy = −µnBz + µ2
nBxBy

Mxz = µnBy + µ2
nBxBx

Myx = µnBz + µ2
nBxBy

Myy = 1 + µ2
nB

2
y

Myz = −µnBx + µ2
nByBz

Mzx = −µnBy + µ2
nBxBz

Mzy = µnBx + µ2
nByBz

Mzz = 1 + µ2
nB

2
z

The drift-diffusion flux (7) is discretized using the
Scharfetter-Gummel method (Scharfetter and Gummel
1969). The resulting net flux along a mesh edge of length
L connecting vertices 1 and 2 is given by the following.

J1→2
n,net + τ̄

∂J1→2
n,net

∂t
=

(
2
3
F3/2

F1/2

kT

q

)

ave

×

µnM̄

1 + µ2
nB2

NC

L
×

[
B(ξn)(kTn,1)3/2F1/2(ηn,1)−

B(−ξn)(kTn,2)3/2F1/2(ηn,2)
]

= J1→2
n − J2→1

n (8)

B(ξn) =
ξn

exp(ξn)− 1

ξn = L

(
3
2
F1/2

F3/2

q

kTn

)

ave

[
E1→2 +

1
L

∆
(

2
3
F3/2

F1/2

kTn

q

)]

Conservation of electron energy can also be derived
from (6). The energy continuity equation is obtained by
setting O = E and integrating over all k-states to obtain
the second moment.

−∂En

∂t
= qE · Jn +∇ · Stot

n + UE

where Stot
n is the total electron energy flux and UE is the net

loss of energy to both recombination and phonon scattering.

UE = 〈Ekin
n 〉Un + n

F3/2

F1/2

(
kTn − kTlat

τn

)

where 〈Ekin
n 〉 is the average kinetic energy, Tlat is the tem-

perature of the semiconductor crystal, and τn is the energy
relaxation lifetime.

The components of total energy flux are known from
the thermodynamics of ideal Fermi gases. In drift-diffusion,
when a charge moves through space, it is removed from one
Fermi gas with a particular chemical potential and tem-
perature, and it is transferred to another Fermi gas with
a different chemical potential and temperature. Obviously,
the internal (kinetic) energy of the transferred charges is
part of the total energy exchanged between the gases. If
the gases have different chemical potentials with respect to
their ground states, then there is also a certain amount of
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chemical work that also counts as an energy transfer. Fi-
nally, if the gases have different temperatures, then trans-
ferred charges must be heated or cooled to the temperature
of the receiving gas. This thermalization process has the
form of heat flow between the two Fermi gases.

Setting O = vE in (6) and integrating over all k-states
is the third moment and accounts for both the internal en-
ergy and chemical work components of the total flux. Ap-
plying the Scharfetter-Gummel method then results in the
following discrete expression for these components of energy
flux between neighboring gases 1 and 2.

S1→2
kw,net + τ̄

∂S1→2
kw,net

∂t
=

(
2
5
F5/2

F3/2

kT

q

)

ave

×

µnM̄

1 + µ2
nB2

NC

L
×

[
B(ξE)(kTn,1)5/2F3/2(ηn,1)−

B(−ξE)(kTn,2)5/2F3/2(ηn,2)
]

= S1→2
kw − S2→1

kw (9)

ξE = L

(
3
2
F3/2

F5/2

q

kTn

)

ave

[
5
3
E1→2 +

1
L

∆
(

2
3
F5/2

F3/2

kTn

q

)]

Transport simulators based on both drift-diffusion and
hydrodynamics treat heat flow between gases according to
the Stratton model (Stratton 1962), which expresses it in
terms of a thermal conductivity of the charges and a tem-
perature gradient. However, the heat required to thermalize
charges moving from one gas to another can be more pre-
cisely defined in terms of the heat capacity of Fermi gases.

CV ≡ (E − Fn)
d

d(kTn)

The net heat flow can then be obtained by defining the
operator in (6) as O = vCV , evaluating the temperature
derivatives of the distribution function fn, integrating over
all k-states, applying the Scharfetter-Gummel discretization
scheme, and integrating the exchanged charges from their
initial to final temperatures. The resulting discretized net
heat flow is then given by the following.

S1→2
heat,net + τ̄

∂S1→2
heat,net

∂t
= [S1→2

kw − S1→2
kw,Tn,2

−
Fn,1(J1→2

n − J1→2
n,Tn2

)]−
[S2→1

kw − S2→1
kw,Tn,1

−
Fn,2(J2→1

n − J2→1
n,Tn1

)]

where Si→j
kw are the same energy fluxes defined in (9) and

Si→j
kw,Tn,j

are those same fluxes calculated with both gases
held at Tn,j . Likewise, J i→j

n are the same charge fluxes
defined in (8) and J i→j

n,Tn,j
are those same fluxes with both

gases at Tn,j . Analogous discrete expressions exist for the
net mobile hole charge and energy fluxes, Jp and Stot

p re-
spectively.

2.3 Lattice Heating

The vector field equations in Section 2.1 along with
the charge and energy fluxes in Section 2.2 form a physi-
cally self-consistent classical model of the electromagnetic
interaction. When solved simultaneously, they show how
dynamic fields and mobile charges interact within an ideal-
ized semiconductor that acts as a perfect heat sink always
remaining at room temperature. However, real semicon-
ductors have finite thermal conductivities and heat capaci-
ties that result in lattice heating as current passes through
them. To account for this, an additional equation balanc-
ing the production of lattice energy by Joule’s heat with its
dissipation by thermal diffusion is also solved.

−ρsCp
∂Tlat

∂t
= ∇ · κ∇Tlat −Eapplied · q(Jp − Jn)

where ρs is the semiconductor’s density, Cp is its specific
heat, and κ is its thermal conductivity.

2.4 Time Stepping

For general input excitations, including sharp large sig-
nal pulses, mobile charge densities and temperatures can
initially fluctuate very rapidly (femtosecond time scales).
Later these fluctuations dampen as the system approaches
a new steady state. The damping process can take a rela-
tively long time, reaching steady state after tens or hundreds
of nanoseconds. Spanning this wide dynamic range requires
adaptive time stepping.

All dynamic quantities in this model are treated as
piece-wise linear in time, and their time derivatives are
evaluated with the fully implicit backward Euler method.
Therefore, any solution variable φ at time step i is approx-
imated by the first two terms of a generally infinite series.

φi = φi−1 + φ̇i−1∆t+
1
2
φ̈i−1∆t2 + · · ·

The third term in the series serves as a measure of φ’s devia-
tion from linearity and as a useful criterion for determining
the next time step. When φi is computed, simple estimates
of its time derivatives are calculated.

φ̇i ≈ φi − φi−1

∆ti
; φ̇i−1 ≈ φi−1 − φi−2

∆ti−1

φ̈i−1 ≈ φ̇i − φ̇i−1

(∆ti + ∆ti−1)/2

After a maximum relative error εmax is chosen, the second
derivative can then be used to determine the next appro-
priate time step.

∆ti+1 =
√

2εmaxφi/φ̈i−1

Using εmax = 0.001, following this procedure for the elec-
tron and hole chemical potentials and temperatures as well
as for the lattice temperature, and using the smallest com-
puted ∆ti+1 as the next time step has been an effective way
to capture the wide dynamic range that electron devices can
exhibit.

3. DELAUNAY/VORONOI
SURFACE INTEGRATION
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To express the equations in Section 2 so that they can
be solved simultaneously, the useful properties of a Delau-
nay mesh (Delaunay 1934) representing the problem domain
can be employed. A contiguous set of tetrahedrons satisfies
the Delaunay criterion if none of the vertices lie within any
of the tetrahedrons’ circumspheres. When this is true, a re-
ciprocal mesh, whose vertices are the circumcenters of the
tetrahedrons, can be computed. The reciprocal mesh is the
dual of the primary Delaunay mesh, and it consists of con-
tiguous Voronoi polyhedrons that fill the problem domain.
Figure 1 shows a set of Delaunay tetrahedrons that share a
common primary edge and the Voronoi polygon that corre-
sponds to that edge. The edge is, by definition, perpendic-

Ei

Hj

Ai

Fig. 1: Delaunay tetrahedrons sharing a common edge and
the Voronoi polygon facet formed by their circumcenters.

ular to the polygon.

The relationship between the primary edge and the dual
polygon provides an easy way to represent Ampere’s law.
A projection of an electric field is assigned to each primary
edge, and projections of magnetic fields are assigned to the
dual edges that form the perimeter of the Voronoi polygon.
The value of the electric field Ei on a primary edge is de-
fined by integrating (3) over the area of the polygon Ai and
applying the Stokes curl theorem.

∫

Ai

(
J +

∂εE

∂t

)
· da =

∫

Ai

∇×H · da =
∮

∂Ai

H · dl

(
Ji +

∂εEi

∂t

)
Ai =

∑

j

HjLj (10)

In this way, the electric field projection on each primary
edge is defined in terms of magnetic field projections on
dual edges.

The relationship between Delaunay meshes and their
Voronoi reciprocals also offers a convenient way to define

the magnetic field projections assigned to dual edges. Fig-
ure 2 shows that every dual edge is perpendicular to a pri-
mary triangle. The projection of the magnetic field Hj on

Ei

Hj

Aj

Fig. 2: Dual edges are perpendicular to primary Delaunay
triangles.

a dual edge is defined by integrating (4) over the area of its
corresponding primary triangle Aj and applying the Stokes
curl theorem.

−
∫

Aj

∂µH

∂t
· da =

∫

Aj

∇×E · da =
∮

∂Aj

E · dl

−∂µHj

∂t
Aj =

∑

i

EiLi (11)

Applying this procedure to each dual edge and combining
the results with the equations for the electric field projec-
tions (10) produces a set of linearly independent equations
that can be solved to determine the electric and magnetic
fields throughout the problem domain.

In addition to providing convenient ways to represent
the curl operators in Ampere’s and Faraday’s laws, the De-
launay and Vornoi meshes can be used to represent the di-
vergence operators that appear in electrostatics as well as
charge and energy conservation. Referring back to Figure 1,
each primary edge can be associated with a Voronoi poly-
gon. As shown in Figure 3, each primary vertex belongs to
a number of primary edges, all of which have Voronoi poly-
gons that fit together contiguously to form a polyhedron
enclosing the vertex. To evaluate the divergence of a flux,
such as the electric displacement in Gauss’s electrostatic
law, it is first integrated over the volume of the polyhedron.
By the divergence theorem, the volume integral of the diver-
gence is equivalent to the integral of the flux over the surface
area of the polyhedron. This surface integral is evaluated
by simply visiting each primary edge to which the vertex
belongs, evaluating the flux on the edge, and multiplying it

5



Aij

vi

vj

Fig. 3: The Voronoi polygons for all the primary edges con-
taining a particular vertex form a faceted polyhedron that
encloses the vertex. This polyhedron is used in the box in-
tegration method to represent divergences away from the
vertex.

by the area of its associated dual polygon.
∫

Vi

∇ · εEdv =
∮

∂Vi

εE · da =
∑

j

ε
ψi − ψj

Lij
Aij

The procedure is called the box integration method and is
widely used in semiconductor device simulation.

To summarize, DVSI is used to represent Ampere’s and
Faraday’s laws on the Delaunay mesh, and box integration
is used to represent Gauss’s electrostatic law, the continu-
ity of electrons and holes, the conservation of electron and
hole energies, as well as the conservation of lattice energy.
The result is a set of highly nonlinear coupled differential
equations which is solved simultaneously with the full New-
ton method. The solutions show the full wave behavior of
the electromagnetic fields coupled to the nonlinear thermo-
dynamics of the mobile charges at each moment of time
considered during the simulation.

4. RESULTS AND DISCUSSION

To test the simulation, the simple lossy transmission
line shown in Figure 4 is considered. It consists of two

1000 m

100 m

100 m

Vin

+

-

Zsheet = 50 /
doped

perfect conductor

perfect conductor

Fig. 4: A parallel conductor transmission line with a doped
semiconductor serving as a lossy substrate and a 50 Ω ter-
mination at the output.

ideal metal contacts on a doped semiconductor substrate
terminated with a 50 Ω impedance. For the first test case,
the metals form ohmic contacts with the substrate, which

is treated as uniformly doped (1015 cm−3 p-type) silicon.
The line is excited with Gaussian time domain input sig-
nals, and the S21 scattering parameters are extracted from
Fourier analyses of the simulated input and output voltages
and currents. This simple, highly linear test case permits
accurate analytic approximations for the S-parameters de-
rived from the telegraphist’s equations (Ramo et al. 1984).
Comparing the analytic S-parameters with the simulated
values is a useful test of both the charge transport model
and the field solutions.

Figure 5 compares the derived S-parameters with their
simulated values, computed with both full wave electromag-
netics and with the quasi-static approximation. The full

-3.5

-3

-2.5

-2

-1.5

-1

 0  2  4  6  8  10

S
21

 (
dB

)

frequency (GHz)

full wave
quasi

derived

Fig. 5: Simulated S-parameters for the lossy transmission
line in Figure 4 compared to those derived from the tele-
graphist’s equations. The metals form ohmic contacts with
the p-type silicon substrate. The simulated data labeled
“full wave” were computed with full wave electromagnetics,
and those labeled “quasi” used the quasi-static field approx-
imation.

wave data compare favorably with the analytic solutions,
with the increasing error at higher frequencies most likely
due to decreasing Fourier components of the input signal.
A flatter input spectrum decreases the error. Figure 4 also
shows very poor agreement between the quasi-static and
analytic solutions. This is interesting because full wave ef-
fects are typically thought of in terms of interference that
occurs when feature sizes are comparable to wavelength.
When feature sizes are much smaller than the wavelength,
the quasi-static field approximation is typically considered
appropriate. However, the transmission line in Figure 4 is
an order of magnitude shorter than the smallest signal wave-
length considered, and yet the quasi-static approximation is
highly inaccurate.

The electrically short transmission line exhibits the sig-
nificant full wave effect shown in Figure 5 because quasi-
static fields do not store energy. When the Gaussian input
signal is applied, energy is injected into the line, and that
energy will persist for as long as it takes the terminating
impedance and the mobile charges in the substrate to dis-
sipate it. The energy is stored in the form of rotational
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electric and magnetic fields, determined by Ampere’s and
Faraday’s laws. Since the quasi-static approximation does
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Fig. 6: Simulated output currents for the lossy transmission
line in Figure 4 excited by a Gaussian input voltage signal.
The currents labeled “full wave” were computed with full
wave electromagnetics, and those labeled “quasi” used the
quasi-static field approximation.

not consider these fields, the current delivered to the output
impedance simply follows the input voltage and is unable
to represent the currents that persist after the input signal
goes to zero, as shown in Figure 6.

A nonlinear example, in which the top metal in Fig-
ure 4 forms a Schottky contact with a doped (1015 cm−3 n-
type) GaAs substrate, was also considered. The rectifying
Schottky contact blocks current for negative applied volt-
ages but allows the substrate to conduct significant currents
under sufficiently large positive voltages. It also produces
a very narrow depletion region beneath the top metal that
greatly increases the transmission line’s capacitance. Fig-
ure 7 shows S-parameter computed around quiescent bias
points of 0 V (nonconducting) and 2 V (highly conducting).
The nonlinear properties of this transmission line make its
frequency characteristics strong functions of its bias condi-
tion, and like the previous example, high frequency solutions
require full wave electromagnetics.

4. CONCLUSIONS

Maxwell’s field equations and the thermodynamics of
ideal Fermi gases of charged particles form a complete and
physically self-consistent classical model of the electromag-
netic interaction. The remarkable compatibility of the vec-
tor calculus of the fields and the statistical mechanics of the
charges is not coincidental. Since Maxwell developed the
field theory while he was also working on the kinetic theory
of gases, it is likely the two theories were intended to work
together. Although the quantum mechanics of fermions re-
quired the Maxwell-Boltzmann distribution of the charged
particles to be replaced with the more general Fermi-Dirac
distribution, the essential physics is the same. The field
theory has not required any modification from its original
form.
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Fig. 7: Simulated S-parameters for the lossy transmission
line in Figure 4 with the top metal forming a Schottky con-
tact with an n-type GaAs substrate. The voltage labels
show the quiescent biases. Curves labeled “full wave” were
computed with full wave electromagnetics, and those la-
beled “quasi” used the quasi-static field approximation.

Although the necessary pieces of a complete classical
theory of the electromagnetic interaction have been in place
for a long time, the model had not been computed self-
consistently. The most commonly developed techniques
for treating the vector field components of the model have
not been well suited for highly nonlinear charge transport,
and the techniques developed for nonlinear charge trans-
port have not been generalized to treat vector fields self-
consistently. This paper has presented a new discretization
scheme called DVSI that overcomes these obstacles by rep-
resenting both the curls of vector fields and the divergences
of fluxes in a self-consistent manner.

DVSI permits the fully coupled solution of the classi-
cal electromagnetic interaction for highly nonlinear systems
from dc to arbitrarily high frequencies. It was used to sim-
ulate lossy transmission lines that exhibit different degrees
of nonlinearity. A highly linear case showed the simulated
results to agree well with analytic solutions. This simple re-
sult also demonstrated that full wave electromagnetics can
be important even when devices features are much smaller
than signal wavelengths. This is true when the device is
able to store electromagnetic energy. The energy is stored
in the form of rotational fields determined by Ampere’s and
Faraday’s laws. Additional simulations of nonlinear trans-
mission lines showed that the high frequency characteristics
strongly depend on the dc quiescent bias condition. Further
potential uses for the code include the full wave simulation
of high speed microelectronics and optoelectronics, which
will be the subjects of future work.
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